نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری اقتصاد، گروه اقتصاد، دانشکده مدیریت و اقتصاد، دانشگاه تبریز، تبریز، ایران.

2 استاد، گروه اقتصاد، دانشکده مدیریت و اقتصاد، دانشگاه تبریز، تبریز، ایران.

چکیده

یکی از مهم‌ترین مباحث بازار سرمایه، آگاهی از میزان ریسک است که می‌تواند بازده سهام شرکت‌ها را تحت‌تأثیر قرار دهد و نقش بسزایی در تصمیم‌گیری‌ها ایفا می‌کند. در همین راستا مدل قیمت‌گذاری دارایی‌های سرمایه‌ای مطرح و موردتوجه پژوهشگران قرار گرفته است. این مدل‌ها تحت‌تأثیر عوامل مختلف درونی شرکت‎ها و متغیرهای کلان هستند؛ اما یکی از متغیرها که رابطه تنگاتنگی با بازارهای مالی دارد، فناوری زنجیره‌بلوکی است. ازاین‌رو مطالعه حاضر به بررسی تأثیر فناوری زنجیره‌بلوکی بر نوسان ریسک کل در 84 شرکت منتخب بازار بورس کشور طی فروردین 1390 تا مرداد 1400 با استفاده از رویکرد گشتاور تعمیم‌یافته سیستمی پرداخته است. نتایج مطالعه نشان می‌دهد  اثرات سرریز ارزش بازاری، فناوری زنجیره‌بلوکی، رشد اقتصادی، نرخ ارز و قیمت نفت بر ریسک کل مثبت و نرخ بازده دارایی‌ها، شرکت‌های مالی، هزینه‌های تحقیق و توسعه و نرخ تورم اثر منفی بر ریسک کل داشته است.

کلیدواژه‌ها

موضوعات

Abbas, Y., Martinetti, A., Moerman, J., Hamberg, T., Dongen, V., & Leo, A. (2020). Do you have confidence in how your rolling stock has been maintained? A blockchain-led knowledge-sharing platform for building trust between stakeholders. International Journal of Information Management, 55, 1-12.
Abdullahi, M. (2019). Evaluating the macroeconomic dimensions of the spread of the Corona virus. Economic Research Office of the Parliament (in Persian).
Abuzayed, B., Elie, B., Nedal, A., & Naji, J. (2021). Systemic risk spillover across global and country stock markets during the COVID-19 pandemic. Economic Analysis and Policy, 71(2), 180-197.
Anwar, S., Faisal, R., & NaelSayedahmed, D. (2022). The impact of blockchain technology on stock market performance during COVID-19: A comparison of the stock markets in the United Arab Emirates and India. International Journal of Mechanical Engineering, 70(1), 1645-1650.
Arellano, M., & Bond, S. (1991). Some tests of specifications for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58, 277-297.
Baltagi, B. (2008). Econometric analysis of panel data (5th ed.). John Wiley & Sons.
Baek, S., Mohanty, S., & Glambosky, M. (2020). COVID-19 and stock market volatility: An industry level analysis. Finance Research Letters.
Beirne, J., et al. (2008). Volatility spillovers and contagion from mature to emerging stock markets. International Monetary Fund (IMF) Working Paper, WP/08/286.
Carlini, F., Cucinelli, D., Previtali, D., & Soana, M. G. (2020). Don't talk too bad! Stock market reactions to bank corporate governance news. Journal of Banking & Finance, 105962.
Chen, X., & Chiang, T. C. (2020). Empirical investigation of changes in policy uncertainty on stock returns–Evidence from China’s market. Research in International Business and Finance, 101183.
Dai, Z., & Zhu, H. (2020). Stock return predictability from a mixed model perspective. Pacific-Basin Finance Journal, 60, 101267.
Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillover. International Journal of Forecasting, 23, 57-66.
Fatahi, S., & Kianpour, S. (2019). The relationship between stock market returns, gold returns and the spread of the corona virus in Iran: The approach of capiola functions. Economics and Modeling Quarterly, 11(2), 181-221 (in Persian).
Hassanrasheed, D. M. (2022). Effect of blockchain technology investment on the stock market reaction, firm value, and financial performance. Journal of Modern Commercial Studies, 8(14), 151-189.
He, F., Lucey, B., & Wang, Z. (2020). Trade policy uncertainty and its impact on the stock market: Evidence from China-US trade conflict. Finance Research Letters, 101753.
Huang, H. Y., & Ho, K. C. (2020). Liquidity, earnings management, and stock expected returns. The North American Journal of Economics and Finance, 54, 101261.
Huang, S., & Liu, H. (2021). Impact of COVID-19 on stock price crash risk: Evidence from Chinese energy firms. Energy Economics, 101(2), 1-10.
Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in non-linear multivariate models. Journal of Econometrics, 74, 119-147.
Liu, Z., Luu, T., Huynh, D., & Dai, P. (2021). The impact of COVID-19 on the stock market crash risk in China. Research in International Business and Finance, 57(2), 1-10.
Maqsood, H., Mehmood, I., Maqsood, M., Yasir, M., Afzal, S., Aadil, F., & Muhammad, K. (2020). A local and global event sentiment based efficient stock exchange forecasting using deep learning. International Journal of Information Management, 50, 432-451.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-99.
Pesaran, M. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58, 17-29.
Taheri, I. (2019). Examining the consequences of the corona virus on the economy of Iran and the world. The Quarterly of Hakmrani Ta'ala, 2(2), 171-182 (in Persian).
Yen, J., & Wang, T. (2020). Stock price relevance of voluntary disclosures about blockchain technology and cryptocurrencies. Nonlinear Science, Non-equilibrium and Complex Phenomena.
Zhang, Y., & Liu, H. (2020). Stock market reactions to social media: Evidence from WeChat.
Zhu, B., & Niu, F. (2016). Investor sentiment, accounting information and stock price: Evidence from China. Pacific-Basin Finance Journal, 38, 125-134.